Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 136
Filter
1.
Aquat Toxicol ; 271: 106941, 2024 May 05.
Article in English | MEDLINE | ID: mdl-38723469

ABSTRACT

OBJECTIVE: To characterise and compare the toxicity of estetrol (E4) and 17α-ethinylestradiol (EE2), and their respective mixture with the progestin drospirenone (DRSP) in zebrafish (Danio rerio) embryos. METHODS: Zebrafish embryos were exposed to E4, EE2, DRSP, E4+DRSP, and EE2+DRSP in a fish embryo acute toxicity (FET) test. A second test examined behavioural responses and, using label-free proteomics, identified changes in protein expression in response to hormonal treatments, across a range of concentrations, including those that are considered to be environmentally relevant. RESULTS: In the FET test, no effects were found from E4 at concentrations ≤100 mg/L, while EE2 induced mortality and morphological abnormalities at concentrations of 1-2 mg/L. In the behavioural test, exposure to 30 ng/L EE2 (∼200 × predicted environmental concentration - PEC) resulted in hypoactivity in fish larvae and exposure to 0.3 ng/L EE2 (∼2 × PEC) led to quantitative changes in protein abundance, revealing potential impacts on RNA processing and protein synthesis machinery. Exposure to E4 did not alter behaviour, but several groups of proteins were modulated, mainly at 710 ng/L (∼200 × PEC), including proteins involved in oxidative phosphorylation. When combined with DRSP, EE2 induced reduced effects on behaviour and proteomic responses, suggesting an antagonistic effect of DRSP. E4+DRSP induced no significant effects on behaviour or proteomic profiles at tested concentrations. CONCLUSIONS: These findings suggest that E4-based combined oral contraceptives present a more favourable environmental profile than EE2-based contraceptives, particularly during the early developmental stages of fish.

2.
Environ Pollut ; 351: 124094, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38703983

ABSTRACT

The chorion is the first protective barrier set to prevent numerous pollutants from damaging the developing embryo. However, depending on their size, some nanoplastics (NPs) can pass through this barrier and reach the embryo, while all microplastics (MPs) remain on the outside. This study brings a straight approach to compare MPs and NPs, and assess their direct and indirect effects on zebrafish embryos and larvae. Zebrafish eggs were exposed before 2 h post fertilization (hpf) to polystyrene MPs (5 µm) and NPs (250 nm) at a concentration of 1000 µg/L until 96 hpf. Physiotoxicity and neurotoxicity were assessed prior and post-hatching through several biomarkers. Response to hypoxia (upregulation of hif-1aa and hif-1ab) were found in embryos exposed to MPs, and partly found in those exposed to NPs. Embryos exposed to NPs showed significant tachycardia, reduced O2 consumption and increased apoptosis in the eyes, whereas MPs affected the expressions of all genes related to the neurodevelopment of embryos (elavl3, pax2a, pax6a, act1b). Post-hatching, physiological responses were muted. MPs and NPs exposures ended by evaluating larval behaviours during dark-and-light cycles. Both sizes of plastic particles negatively affected the visual motor response (VMR) and vibrational startle response (VSR). Thigmotaxis levels were significantly increased by NPs whereas MPs showed anxiolytic properties. This study shows that both MPs and NPs affect the physiology and neurodevelopment of zebrafish at different levels, before and after hatching.

3.
Environ Int ; 187: 108702, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38678935

ABSTRACT

Combined oral contraceptives, comprising of both an oestrogen and a progestin component, are released in aquatic environments and potentially pose a risk to aquatic wildlife by their capacity to disrupt physiological mechanisms. In this study, the endocrine disruptive potential of two mixtures, 17α-ethinylestradiol (EE2), a synthetic oestrogen, or estetrol (E4), a natural oestrogen, with the progestin drospirenone (DRSP) have been characterised in three generations of zebrafish, according to an adapted Medaka Extended One Generation Reproduction Test. Zebrafish (Danio rerio) were exposed to a range of concentrations of EE2/DRSP and E4/DRSP (∼1×, ∼3×, ∼10× and ∼30× predicted environmental concentration, PEC). Survival, growth, hatching success, fecundity, fertilisation success, vitellogenin (VTG), gonad histopathology, sex differentiation, and transcriptional analysis of genes related to gonadal sex steroid hormones synthesis were assessed. In the F0 generation, exposure to EE2/DRSP at ∼10 and ∼30× PEC decreased fecundity and increased male VTG concentrations. The highest concentration of EE2/DRSP also affected VTG concentrations in female zebrafish and the expression of genes implicated in steroid hormones synthesis. In the F1 generation, sex determination was impaired in fish exposed to EE2/DRSP at concentrations as low as ∼3× PEC. Decreased fecundity and fertility, and abnormal gonadal histopathology were also observed. No effects were observed in the F2 generation. In contrast, E4/DRSP induced only minor histopathological changes and an increase in the proportion of males, at the highest concentration tested (∼30× PEC) in the F1 generation and had no effect on hatching success of F2 generation. Overall, this study suggests that the combination E4/DRSP has a more favourable environmental profile than EE2/DRSP.

4.
Br J Nutr ; 131(8): 1326-1341, 2024 Apr 28.
Article in English | MEDLINE | ID: mdl-38163983

ABSTRACT

The aim of this study is to determine to what extent the addition of chitinase to black soldier fly (BSF) larval meal enriched or not with long-chain PUFA (LC-PUFA) could improve growth, protein digestion processes and gut microbial composition in Nile tilapia. Two different types of BSF meal were produced, in which larvae were reared on substrates formulated with vegetable culture substrate (VGS) or marine fish offal substrate (FOS). The BSF raised on VGS was enriched in α-linolenic acid (ALA), while that raised on FOS was enriched in ALA + EPA + DHA. Six BSF-based diets, enriched or not with chitinase, were formulated and compared with a control diet based on fishmeal and fish oil (FMFO). Two doses (D) of chitinase from Aspergillus niger (2 g and 5 g/kg feed) were added to the BSF larval diets (VGD0 and FOD0) to obtain four additional diets: VGD2, VGD5, FOD2 and FOD5. After 53 d of feeding, results showed that the BSF/FOS-based diets induced feed utilisation, protein efficiency and digestibility, as well as growth comparable to the FMFO control diet, but better than the BSF/VGS-based diets. The supplementation of chitinase to BSF/FOS increased in fish intestine the relative abundance of beneficial microbiota such as those of the Bacillaceae family. The results showed that LC-PUFA-enriched BSF meal associated with chitinase could be used as an effective alternative to fishmeal in order to improve protein digestion processes, beneficial microbiota and ultimately fish growth rate.


Subject(s)
Chitinases , Cichlids , Diptera , Animals , Larva , Fatty Acids , Animal Feed/analysis , Diptera/chemistry , Fatty Acids, Unsaturated , Vegetables
5.
Chemosphere ; 350: 141107, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38171397

ABSTRACT

The plastisphere is a newly recognized ecosystem. However, its interaction with early life stages of aquatic vertebrates is a multifaceted issue that requires further research. This study investigated the involvement of bacteria in shaping realistic microplastics hazards in zebrafish Danio rerio embryos. Fish were exposed to bottle micro-fragments (FR) and textile micro-fibers (FI) of polyethylene terephthalate (5-15 µm), concomitant with Aeromonas salmonicida achromogenes challenge from 2h post-fertilization for 3 days. Egg chorion showed affinity for FR and FI, inducing earlier embryo hatching. However, this effect was masked by biofilm invasion. Fragments were more detrimental than fibers on developmental parameters, while bacterial presence compromised body length, eye, and yolk sac surface area. In a further finding, MPs alone increased locomotor activity in zebrafish larvae, without synergistic effect when combined with bacteria. Data showed that realistic MPs had no significant effects except for downregulated sod and cyp1a gene expression, whereas bacterial challenge inhibited larval potency for most of the evaluated mRNA levels (mpx (immune system), apoeb (lipid metabolism), nfkb and tfa (inflammation), cyp and sod (oxidative stress)). This study provides new insights into realistic microplastic effects under relevant conditions when combined with environmental pathogen within the first life stages of aquatic vertebrates.


Subject(s)
Microplastics , Water Pollutants, Chemical , Animals , Microplastics/toxicity , Microplastics/metabolism , Zebrafish/genetics , Plastics/metabolism , Embryo, Nonmammalian , Ecosystem , Gene Expression Profiling , Water Pollutants, Chemical/metabolism , Larva
6.
Fish Shellfish Immunol ; 138: 108851, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37245678

ABSTRACT

Psidium guajava L. is known to possess immune-modulatory properties in humans and other mammals. Although the positive effects of P. guajava-based diets on the immunological status have been shown for some fish species, the underlying molecular mechanisms of its protective effects remain to be investigated. The aims of this study were to evaluate the immune-modulatory effects of two guava fractions from dichloromethane (CC) and ethyl acetate (EA) on striped catfish with in vitro and in vivo experiments. Striped catfish head kidney leukocytes were stimulated with 40, 20, 10 and 0 µg/ml of each extract fraction, and the immune parameters (ROS, NOS, and lysozyme) were examined at 6 and 24 h post stimulation. A final concentration of each fraction at 40, 10 and 0 µg/fish was then intraperitoneally injected into the fish. After 6, 24, and 72 h of administration, immune parameters as well as the expression of some cytokines related to innate and adaptive immune responses, inflammation, and apoptosis were measured in the head kidney. Results indicated that the humoral (lysozyme) and cellular (ROS and NOS) immune endpoints were regulated differently by CC and EA fractions depending on dose and time in both, in vitro and in vivo experiments. With regards to the in vivo experiment, the CC fraction of the guava extract could significantly enhance the TLRs-MyD88-NF-κB signaling pathway by upregulating its cytokine genes (tlr1, tlr4, myd88, and traf6), following the upregulation of inflammatory (nfκb, tnf, il1ß, and il6) and apoptosis (tp53 and casp8) genes 6 h after injection. Moreover, fish treated with both CC and EA fractions significantly enhanced cytokine gene expression including lys and inos at the later time points - 24 h or 72 h. Our observations suggest that P. guajava fractions modulate the immune, inflammatory, and apoptotic pathways.


Subject(s)
Catfishes , Psidium , Humans , Animals , Psidium/metabolism , Muramidase/metabolism , Methylene Chloride/metabolism , Reactive Oxygen Species/metabolism , Myeloid Differentiation Factor 88/metabolism , Cytokines/genetics , Cytokines/metabolism , NF-kappa B/metabolism , Immunity , Plant Extracts , Mammals/metabolism
7.
Aquat Toxicol ; 259: 106505, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37058791

ABSTRACT

Natural and synthetic oestrogens are commonly found in aquatic ecosystems. The synthetic oestrogen 17α-ethinylestradiol (EE2) is widely used in oral contraceptives and its ecotoxicological effects on aquatic organisms have been widely reported. The natural oestrogen estetrol (E4) was recently approved for use in a new combined oral contraceptive and, after therapeutic use, is likely to be found in the aquatic environment. However, its potential effects on non-target species such as fish is unknown. In order to characterize and compare the endocrine disruptive potential of E4 with EE2, zebrafish (Danio rerio) were exposed to E4 or EE2 in a fish short-term reproduction assay conducted according to OECD Test Guideline 229. Sexually mature male and female fish were exposed to a range of concentrations, including environmentally relevant concentrations of E4 and EE2, for 21 days. Endpoints included fecundity, fertilization success, gonad histopathology, head/tail vitellogenin concentrations, as well as transcriptional analysis of genes related to ovarian sex steroid hormones synthesis. Our data confirmed the strong impact of EE2 on several parameters including an inhibition of fecundity, an induction of vitellogenin both in male and female fish, an alteration of gonadal structures and the modulation of genes involved in sex steroid hormone synthesis in female fish. In contrast, only few significant effects were observed with E4 with no impact on fecundity. The results suggest that the natural oestrogen, E4, presents a more favorable environmental profile than EE2 and is less likely to affect fish reproductive capacity.


Subject(s)
Estetrol , Water Pollutants, Chemical , Animals , Male , Female , Zebrafish/physiology , Ethinyl Estradiol/toxicity , Estetrol/pharmacology , Vitellogenins , Ecosystem , Water Pollutants, Chemical/toxicity , Reproduction , Estrogens/toxicity
8.
Fish Shellfish Immunol ; 134: 108585, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36758658

ABSTRACT

The D-series resolvins formed from docosahexaenoic acid (DHA) work as anti-inflammatory mediators indicating the role of this long-chain polyunsaturated fatty acid in the immune system of mammals. However, such information is still limited in fish. The current study was conducted to evaluate the immunomodulatory effects of graded levels of DHA in common carp Cyprinus carpio by in vitro and in vivo approaches. In the in vitro experiment, the head kidney leukocytes isolated from common carp (body weight = 120.3 ± 12.4 g) were exposed to DHA at 0, 15, and 75 µM (corresponding to DHA0, DHA15, and DHA75) for 1 h; the cells were then immediately exposed to lipopolysaccharides (LPS) at a dose of 10 µg/ml for 4 or 24 h to stimulate the pro-inflammatory responses. The expression of several target genes involved in the inflammatory response (tlr4, nfkb, il-1, il-6, pge2, pla2, nf-kbi, il-10, and tgf-ß1) and cytoprotection (hsp70, gpx1, and prdx3) was then assessed by RT-qPCR. Results showed that the pro-inflammatory response induced by LPS was confirmed through the upregulations of il-1 and il-6 expressions in the DHA0 group after 4 h of LPS exposure. The downregulations of il-6 in DHA15 and DHA75 cells after 4 h of LPS exposure compared to DHA0 indicated that the free DHA supplementation in the cell culture medium induced an anti-inflammatory response. Decreases of il-10 and nf-kbi expression were also observed in DHA-treated groups and the highest expression of hsp70 in DHA75 cells. In the in vivo experiment, common carp juveniles (21.7 ± 0.9 g) were fed to apparent satiation with a diet supplemented with DHA at 0, 6, and 20 g/kg for 8 weeks. After the feeding trial, the fish were challenged with Aeromonas veronii at 2.1 × 107 CFU/ml and the fish mortality was then recorded during 14 days. At the end of the feeding trial and the second day of bacterial infection, fish blood samples were collected for haematological parameters while liver and head kidney were used for assaying different immune variables. Results showed that the DHA supplementation in fish diet did not influence the fish growth and other husbandry parameters. The lowest value of fish mortality was recorded in DHA20-fed fish. The positive effects of DHA-supplemented diets were also found in myeloperoxidase (MPO), glutathione (GSH), and catalase (CAT) activities. In conclusion, the results suggest that DHA is able to modulate the inflammatory response in the immune celsl at a dose of 75 µM/mL and to boost disease resistance in common carp fed on a diet supplemented with DHA at 20 g/kg of feed.


Subject(s)
Carps , Fish Diseases , Gram-Negative Bacterial Infections , Animals , Interleukin-10 , Carps/metabolism , Docosahexaenoic Acids , Lipopolysaccharides , Interleukin-6 , Dietary Supplements/analysis , Diet , Antioxidants/metabolism , Fatty Acids , Interleukin-1 , Animal Feed/analysis , Mammals/metabolism
9.
Microorganisms ; 11(2)2023 Feb 20.
Article in English | MEDLINE | ID: mdl-36838503

ABSTRACT

Environmental stressors can disrupt the relationship between the microbiota and the host and lead to the loss of its functions. Among them, bacterial infection caused by Aeromonas salmonicida, the causative agent of furunculosis, results in high mortality in salmonid aquaculture. Here, rainbow trout were exposed to A. salmonicida achromogenes and its effects on the taxonomic composition and structure of the microbiota was assessed on different epithelia (gills, skin, and caudal fin) at 6 and 72 h post-infection (hpi) using the V1-V3 region of the 16S rRNA sequencing. Moreover, the infection by the pathogen and immune gene responses were evaluated in the head kidney by qPCR. Our results suggested that α-diversity was highly diverse but predominated by a few taxa while ß-diversity was affected very early by infection in the gills after 6 h, subsequently affecting the microbiota of the skin and caudal fin. A dysbiosis of the microbiota and an increase in genera known to be opportunistic pathogens (Aeromonas, Pseudomonas) were also identified. Furthermore, an increase in pro-inflammatory cytokines and virulence protein array (vapa) was observed in trout head kidney as soon as 6 hpi and remained elevated until 72 hpi, while the anti-inflammatory genes seemed repressed. This study suggests that the infection by A. salmonicida achromogenes can alter fish microbiota of gills in the few hours post-infection. This result can be useful to develop a non-invasive technique to prevent disease outbreak in aquaculture.

10.
J Environ Sci Health B ; 58(1): 31-44, 2023.
Article in English | MEDLINE | ID: mdl-36704964

ABSTRACT

This study investigated the acute toxicity in Clarias gariepinus to insecticides currently used in Benin cotton fields, including Thalis 112 EC (Emamectin benzoate 48 g L-1, Acetamiprid 64 g L-1), Vizir C 92 EC (Cypermethrin 72 g L-1, Abamectin 20 g L-1), Pyrinex Quick 212 EC (Deltamethrin 12 g L-1, Chlorpyrifos 200 g L-1) and Pyro FTE 472 EC (Cypermethrin 72 g L-1, Chlorpyrifos 400 g L-1) with emphasis on liver histopathological effects. A set of 180 juveniles of C. gariepinus (5.21 ± 3.22 g) was exposed for 96 h to increasing concentrations of each pesticide. The values of 96-hLC50 were 4.778, 0.002, 0.004, and 0.012 µL L-1 for Thalis, Vizir, Pyrinex, and Pyro, respectively, indicating that Vizir, Pyrinex, and Pyro were very highly toxic to C. gariepinus juveniles. During the experiments, the morphological and behavioral responses (discoloration, hyperactivity, lethargy, etc.) were observed in exposed fish, hypothesizing the neurotoxicity of these pesticides. Histopathological alterations observed in liver of contaminated fish were regressive changes, such as necrosis, vacuolation, bleeding, nuclear degeneration, hepatocytes degeneration, sinusoids dilatation, etc. Vizir induced the highest histological alteration indices while the lowest were induced by Thalis, confirming the highest toxicity of Vizir. These results indicate that acute concentrations of these insecticidal molecules have destructive effects on the liver of C. gariepinus.


Subject(s)
Catfishes , Chlorpyrifos , Insecticides , Pesticides , Water Pollutants, Chemical , Animals , Insecticides/toxicity , Catfishes/physiology , Pesticides/pharmacology , Liver , Water Pollutants, Chemical/toxicity
11.
Chemosphere ; 311(Pt 1): 136969, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36306963

ABSTRACT

Although the hazards of microplastics (MPs) have been explored, no complete data exists on the effect of MPs on the egg chorion. This study aims to evaluate the modification of immune responses, metabolism, and behavior of zebrafish larvae (Danio rerio) depending on the moment of exposure. Larvae were exposed to 5 µm polystyrene microbeads at a concentration of 0, 100, or 1000 µg/l, according to a specified times of exposure (0-4, 4-8, 0-8 days postfertilization (dpf)), followed by a bacterial challenge at 8 dpf. After every 4 and 8 dpf, swimming activity, gene expression related to oxidative stress and immune system responses were assessed. During embryonic development, larvae exposed to a concentration of 1000 µg/l MPs already showed a significantly reduced tail coiling frequency, yolk sac resorption and heartbeat. At 8 dpf, swimming activity was altered, even without ingestion and a few days after the end of MP exposure. Our results indicated a difference in immune system (nfkb, il1ß) and apoptosis (casp3a, bcl2) related gene expression depending on the timing of MP exposure, which highlighted a contrasting sensitivity according to the exposure time in MP studies. This study brings new insight into how MPs might affect zebrafish larvae health and development even without ingestion.


Subject(s)
Bacterial Infections , Water Pollutants, Chemical , Animals , Microplastics/toxicity , Zebrafish/metabolism , Plastics/metabolism , Larva , Immunity, Innate , Water Pollutants, Chemical/metabolism
12.
Dev Comp Immunol ; 138: 104494, 2023 01.
Article in English | MEDLINE | ID: mdl-35940383

ABSTRACT

This study evaluated the epidermis mucosal capacity of goldfish (Carassius auratus) during different stages of reproductive development in both females and males. In this regard, the activity of mucolytic immune enzymes, i.e., lysozyme, complement and peroxidase, as well as the activity of alkaline phosphatase (ALP) were evaluated. There were five stages for females i.e., immature (f1), cortical alveoli (f2), early and late-vitellogenesis (vtg) (f3 and f4) and ripe (f5); as well as two stages for males spermatogenesis (m1) and spermiation (m2). Some stages were also examined for the mucosal antimicrobial activity against specific pathogens. The results showed that the mucosal lysozyme activity increased significantly during vitellogenesis (P < 0.05), but no lysozyme activity was detected in plasma. On the contrary, the complement activity was only observed in female plasma, and it was significantly higher at f3 compared to the other developmental stages. Both the plasma and mucosal ALP and peroxidase activities showed a significant increase by female reproductive development with the highest amounts at f4. Contrary to the female, no significant changes were observed in plasma and mucosal immune agents and biochemistry of the male. The f5-staged goldfish showed the highest antimicrobial activities against Gram-positive bacteria, i.e., Streptococcus faecium, Staphylococcus aureus and Micrococcus luteus (P < 0.05). Our results also represented the up-regulation of lysozyme (c-lys) gene expression by effects of female maturational development in ovary, liver and skin, while male goldfish showed no significant changes in c-lys expression. Moreover, there were positive correlations between c-lys expression, mucosal lysozyme activity and calcium levels in females (P < 0.01). Overall, our findings revealed that vtg process improves mucosal innate immunity that leads to activate antimicrobial components at spawning season.


Subject(s)
Anti-Infective Agents , Goldfish , Alkaline Phosphatase/genetics , Alkaline Phosphatase/metabolism , Animals , Anti-Infective Agents/metabolism , Calcium/metabolism , Epithelium , Expectorants/metabolism , Female , Goldfish/genetics , Male , Peroxidases/genetics , Peroxidases/metabolism , Up-Regulation
13.
Fish Shellfish Immunol ; 128: 620-633, 2022 Sep.
Article in English | MEDLINE | ID: mdl-36038101

ABSTRACT

This study aimed to determine to what extend the addition of chitinase to black soldier fly larvae (BSF) meals enriched with either PUFA or LC-PUFA could improve the gut health of Nile tilapia and increase its immune status. Two types of BSF meals enriched with either α-linolenic acid (ALA) or ALA + eicosapentaenoic acid (EPA) + docosahexaenoic acid (DHA) were produced using BSF larvae cultured on vegetable substrates (VGS) or fish offal substrates (FOS), respectively. Seven diets were formulated: a control FMFO diet and two other control diets VGD0 vs FOD0 containing the meals of each type of BSF meal as total replacement for fishmeal (FM) and fish oil (FO), as well as four diets supplemented with chitinase. Two doses of commercial chitinase from Aspergillus niger (2 g/kg and 5 g/kg of feed) were supplemented to the other diets VGD0 and FOD0 to formulate VGD2, VGD5, FOD2 and FOD5. After 53 days of feeding, FOD5 diet induced a similar growth performance as the FMFO control diet, while a significant decrease of growth was observed for the other BSF larval-based diets. BSF/FOS meal led to higher SGR of fish than BSF/VGS, as for the FOD5 compared to VGD5. At day 53, lysozyme values showed an increasing trend in fish fed all the BSF-based diets, especially those fed the VGD5. After the Escherichia coli lipopolysaccharide (LPS) injection (day 54), the same increasing trend was observed in lysozyme activity, and modulation was observed only in the VGD5 fish. ACH50 activity was reduced by the BSF-based diets except for the FOD5 diet at day 53, and LPS modulation was only observed for the VGS-chitinase-based diets at day 54. Peroxidase activity and total immunoglobulin (Igs) blood level were not affected by substrate, chitinase dose or LPS injection. At day 53, the low or high dose of chitinase increased the expressions of tlr2, il-1ß and il-6 genes in the head kidney of fish fed the BSF/VGS diets compared to those fed the VGD0 or FMFO control diets. At day 54 after LPS injection, the high dose of chitinase decreased the expressions of tlr5 gene in the spleen and mhcII-α gene in the head kidney of fish fed FOD5 diets compared to those fed FOD0 diets. BSF/VGS but not BSF/FOS based diets increased fish sub-epithelial mucosa (SM) and lamina propria (LP) thickness and the number of goblet cells (GC) in fish, but dietary chitinase seemed to prevent some of these effects, especially at low dose. Results showed that chitinase supplementation of 5 g/kg of chitinase to a BSF-based diet enriched with LC-PUFA improved growth, prevented histological changes in the proximal intestine and enhanced some innate immune functions of Nile tilapia without any clear booster effect after challenge with E. coli LPS.


Subject(s)
Chitinases , Cichlids , Diptera , Animal Feed/analysis , Animals , Diet/veterinary , Dietary Supplements , Docosahexaenoic Acids , Eicosapentaenoic Acid , Escherichia coli , Fish Oils , Immunity , Immunoglobulins , Interleukin-6 , Larva , Lipopolysaccharides/pharmacology , Meals , Muramidase , Peroxidases , Toll-Like Receptor 2 , Toll-Like Receptor 5 , alpha-Linolenic Acid
14.
Chemosphere ; 305: 135407, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35732206

ABSTRACT

An in-situ study combined with an integrated biomarker response was used to evaluate the impact of agricultural effluents in the physiological responses of Nile tilapia reared in cages and enclosures of water reservoirs in North Benin. Fish were distributed in fish farming systems at two sites: Songhai located outside the cotton basin and Batran located in the most productive commune. They were sampled for blood and organs before (BST), during (DST) and after (AST) pesticide treatment. Pesticide residues were analysed in water, sediments and fish muscles. Several biomarkers were investigated related to the immune (peroxidase, lysozyme and complement activities, superoxide anion production) and reproductive (sex steroids and vitellogenin levels) responses as well as neurotoxicity (cholinesterase activity) and tissue alterations. Biomarkers were assessed and analysed via the integrated biomarker response (IBR). The results showed that Batran water reservoir was a more harmful ecosystem for fish than Songhai one, especially by depressing some immune and reproductive functions in relation to a higher-level of pesticide contamination. They also demonstrated that the contact of fish to sediments in enclosures aggravated the pesticide burden on fish. Therefore, using males as bioindicators would improve the sensitivity of the used biomarkers since males seemed more affected than females especially due to pesticide estrogenic induction impacting their reproductive system.


Subject(s)
Cichlids , Pesticide Residues , Pesticides , Water Pollutants, Chemical , Animals , Biomarkers/analysis , Ecosystem , Environmental Monitoring/methods , Female , Male , Pesticide Residues/analysis , Pesticides/analysis , Water/analysis , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicity
15.
Genes (Basel) ; 13(5)2022 05 22.
Article in English | MEDLINE | ID: mdl-35627308

ABSTRACT

The HiFi sequencing technology yields highly accurate long-read data with accuracies greater than 99.9% that can be used to improve results for complex applications such as genome assembly. Our study presents a high-quality chromosome-scale genome assembly of striped catfish (Pangasianodon hypophthalmus), a commercially important species cultured mainly in Vietnam, integrating HiFi reads and Hi-C data. A 788.4 Mb genome containing 381 scaffolds with an N50 length of 21.8 Mb has been obtained from HiFi reads. These scaffolds have been further ordered and clustered into 30 chromosome groups, ranging from 1.4 to 57.6 Mb, based on Hi-C data. The present updated assembly has a contig N50 of 14.7 Mb, representing a 245-fold and 4.2-fold improvement over the previous Illumina and Illumina-Nanopore-Hi-C based version, respectively. In addition, the proportion of repeat elements and BUSCO genes identified in our genome is remarkably higher than in the two previously released striped catfish genomes. These results highlight the power of using HiFi reads to assemble the highly repetitive regions and to improve the quality of genome assembly. The updated, high-quality genome assembled in this work will provide a valuable genomic resource for future population genetics, conservation biology and selective breeding studies of striped catfish.


Subject(s)
Catfishes , Animals , Catfishes/genetics , Chromosomes , Genome/genetics , Genomics/methods , Molecular Sequence Annotation
16.
Sci Total Environ ; 838(Pt 1): 155912, 2022 Sep 10.
Article in English | MEDLINE | ID: mdl-35588819

ABSTRACT

The complex mixtures of contaminants released in wastewater treatment plant (WWTP) effluents are a major source of pollution for aquatic ecosystems. The present work aimed to assess the environmental risk posed by WWTP effluents by applying a multi-biomarker approach on caged rainbow trout (Oncorhynchus mykiss) juveniles. Fish were caged upstream and downstream of a WWTP for 21 days. To evaluate fish health, biomarkers representing immune, reproductive, nervous, detoxification, and antioxidant functions were assayed. Biomarker responses were then synthesized using an Integrated Biomarker Response (IBR) index. The IBR highlighted similar response patterns for the upstream and downstream sites. Caged juvenile females showed increased activities of innate immune parameters (lysozyme and complement), histological lesions and reduced glycogen content in the hepatic tissue, and higher muscle cholinergic metabolism. However, the intensity of the observed effects was more severe downstream of the WWTP. The present results suggest that the constitutive pollution level of the Meuse River measured upstream from the studied WWTP can have deleterious effects on fish health condition, which are exacerbated by the exposure to WWTP effluents. Our results infer that the application of IBR index is a promising tool to apply with active biomonitoring approaches as it provides comprehensive information about the biological effects caused by point source pollution such as WWTP, but also by the constitutive pollutions levels encountered in the receiving environment.


Subject(s)
Oncorhynchus mykiss , Water Pollutants, Chemical , Water Purification , Animals , Biological Monitoring , Biomarkers/metabolism , Ecosystem , Environmental Monitoring/methods , Female , Oncorhynchus mykiss/metabolism , Wastewater/analysis , Wastewater/toxicity , Water Pollutants, Chemical/analysis
17.
Appl Microbiol Biotechnol ; 106(8): 3245-3264, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35366085

ABSTRACT

In the present study, juvenile striped catfish (Pangasianodon hypophthalmus), a freshwater fish species, have been chronically exposed to a salinity gradient from freshwater to 20 psu (practical salinity unit) and were sampled at the beginning (D20) and the end (D34) of exposure. The results revealed that the intestinal microbial profile of striped catfish reared in freshwater conditions were dominated by the phyla Bacteroidetes, Firmicutes, Proteobacteria, and Verrucomicrobia. Alpha diversity measures (observed OTUs (operational taxonomic units), Shannon and Faith's PD (phylogenetic diversity)) showed a decreasing pattern as the salinities increased, except for the phylogenetic diversity at D34, which was showing an opposite trend. Furthermore, the beta diversity between groups was significantly different. Vibrio and Akkermansia genera were affected differentially with increasing salinity, the former being increased while the latter was decreased. The genus Sulfurospirillium was found predominantly in fish submitted to salinity treatments. Regarding the host response, the fish intestine likely contributed to osmoregulation by modifying the expression of osmoregulatory genes such as nka1a, nka1b, slc12a1, slc12a2, cftr, and aqp1, especially in fish exposed to 15 and 20 psu. The expression of heat shock proteins (hsp) hsp60, hsp70, and hsp90 was significantly increased in fish reared in 15 and 20 psu. On the other hand, the expression of pattern recognition receptors (PRRs) were inhibited in fish exposed to 20 psu at D20. In conclusion, the fish intestinal microbiota was significantly disrupted in salinities higher than 10 psu and these effects were proportional to the exposure time. In addition, the modifications of intestinal gene expression related to ion exchange and stressful responses may help the fish to adapt hyperosmotic environment. KEY POINTS: • It is the first study to provide detailed information on the gut microbiota of fish using the amplicon sequencing method. • Salinity environment significantly modified the intestinal microbiota of striped catfish. • Intestinal responses may help the fish adapt to hyperosmotic environment.


Subject(s)
Catfishes , Gastrointestinal Microbiome , Animals , Catfishes/physiology , Gene Expression , Phylogeny , Salinity
18.
Fish Shellfish Immunol ; 122: 1-12, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35007746

ABSTRACT

Eicosanoids, resolvins, and lipoxins formed from long-chain polyunsaturated fatty acids (LC-PUFAs) are the main lipid mediators in the inflammatory processes explaining the influence of dietary lipid sources on the immune system. The current study aimed to determine the effects of dietary plant oils instead of fish oil or LC-PUFA supplementation in these oils on fish immune and inflammatory responses under normal and LPS-stimulated conditions. Six iso-nitrogenous (ranging from 30.4 to 31.1%) and iso-lipidic (from 11.2 to 11.6%) diets were formulated using three oil sources: cod liver oil (CLO, as fish oil control); linseed oil (LO, rich in α-linolenic acid, ALA); sesame oil (SO, rich in linoleic acid, LA); a blend of LO and SO (SLO, v:v 1:1); and two pure plant oil diets supplemented with docosahexaenoic acid, DHA (SO + DHA, SOD) or arachidonic acid, ARA (LO + ARA, LOA). Fish were fed the experimental diets to satiation for 42 days. On day 43, they were injected with E.coli lipopolysaccharide (LPS) at 100 µg/fish. Fish plasma and tissues such as head kidney and liver were collected on day 42 and one day after LPS injection (day 44) for humoral immune variables and gene expression analyses, respectively. After 42 days of feeding, no influences of dietary oils were found on fish survival, growth, feed utilization, and humoral immune responses. On the other hand, LPS injection significantly stimulated immune responses and induced an acute inflammation in common carp through an increase of the complement activity and the up-regulation of genes involved in the innate immune system (c2), pro-inflammatory response (tlr-4, tnf-α, il-1, il-6, il-8, and cxc), eicosanoid metabolism (pla2, cox-1, 5-lox, and pge2), and anti-inflammatory response (tgf-ß1 and nf-fki). Further, the expression of hsp70 was stimulated by LPS injection. The effects of dietary oil sources were observed after LPS injection, with a significant modification in the expression of almost all candidate genes. The highest pro-inflammatory responses induced by LPS were observed in CLO-fed fish while the mixture of plant oils (SLO) and LC-PUFA-supplemented diets induced significantly higher modulations in anti-inflammatory responses (il-10 and nf-kbi), general stress status (hsp70), and cytoprotection (gpx-1) compared to fish oil control and other pure plant oil groups. In conclusion, the immune response of common carp has been modified by the dietary fat sources. The fish oil-based diet supported an increase of the pro-inflammatory responses while the mixture of plant oil or LC-PUFA supplemented diets improved the anti-inflammatory responses and cytoprotection.


Subject(s)
Carps , Animals , Carps/metabolism , Diet/veterinary , Docosahexaenoic Acids , Escherichia coli , Fish Oils/metabolism , Immunity , Inflammation/chemically induced , Inflammation/veterinary , Lipopolysaccharides/pharmacology , Plant Oils/metabolism
19.
J Fish Biol ; 100(2): 532-542, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34822181

ABSTRACT

Providing a non-invasive procedure to track fish maturity remains a priority in broodstocks' management. In the present study, the main goal was to assess reproduction status by measuring sex steroids and vitellogenin (VTG) in the skin mucosa, as a non-invasive method. For this purpose, the present study compared the levels of estradiol-17ß (E2 ), testosterone (T), 11-ketotestosterone (11-KT), VTG and calcium (Ca) in skin mucosa and blood plasma of goldfish (Carassius auratus). Skin mucosal and blood samples were collected, as well as gonad tissues, from goldfish, as a seasonal spawner. Histological analysis confirmed the gender and maturity status from females' ovaries (as primary-growth, cortical-alveoli, initial and late-vitellogenesis) and males' testes (as spermatogenesis and spermiation). Furthermore, vitellogenin (vtg) expression was observed in skin, liver and gonads. The results indicate that mucosal E2 concentrations were significantly higher during initial and late vitellogenesis than the other stages. Mucosal 11-KT concentrations significantly increased at spermiation (P < 0.05). E2 /T and 11-KT/E2 ratios significantly increased at early vitellogenesis and spermatogenesis, respectively (P < 0.05). Females' mucosal VTG levels were significantly fluctuated according to the maturity stage. Ca showed a similar trend, but Ca was more accurate for sex identification than the VTG. Although mucus showed high levels of VTG, ovarian vtg expression was strongest while liver and skin had the similar results. These results show that measuring the mucosal androgens could be considered as an accurate, non-invasive method to monitor fish maturity.


Subject(s)
Goldfish , Vitellogenins , Animals , Estradiol , Female , Gene Expression , Goldfish/genetics , Goldfish/metabolism , Male , Mucous Membrane/metabolism , Testosterone/analogs & derivatives , Vitellogenins/genetics , Vitellogenins/metabolism
20.
Fish Physiol Biochem ; 47(6): 1995-2013, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34708321

ABSTRACT

In this study, striped catfish larvae were gradually exposed to the increase of different salinities, and then they reached the levels of 0, 5, 10, 15, and 20 psu after 10 days, followed by heat shock at 39 °C to determine stress tolerance. After the 10-day experiment, the survival rate of fish exposed to the 20 psu treatment was only 28.6 ± 4%, significantly lower than that of the other treatments. The results showed that the osmolality of the whole-body (WB) homogenate was gradually and significantly increased with salinity elevation, except in fish exposed to freshwater and 5 psu treatments, while there were no significant changes in WB Na+/K+-ATPase activity. Digestive enzymatic activities, i.e., pepsin, α-amylase, alkaline phosphatase, and leucine alanine peptidase (leu-ala) generally increased with salinity, but not aminopeptidase and trypsin. Lysozyme and peroxidase activities increased in fish larvae exposed to 15 and 20 psu. These increases proportionally improved growth performance, with the lowest and the highest final weights observed in fish reared at 0 psu (0.08 ± 0.03 g/larvae) and 20 psu (0.11 ± 0.02 g/larvae), respectively, although the average growth recorded at 20 psu could be biased by the high mortality in this group. Occurrence of skeleton deformities, such as in caudal vertebrae and branchiostegal rays, was significantly higher in fish exposed to the higher osmotic conditions (15.0 ± 1.2% and 10.3 ± 2.1% respectively at 0 psu vs. 31.0 ± 2.9% and 49.0 ± 5.6%, respectively at 15 psu). After the 12.5-h heat shock, survival rates significantly differed between treatments with the highest survival observed in fish submitted to 5 psu (68.9%), followed by those exposed to 0 (27%) and 10 (20%) while all fish died at 15 psu. These findings suggest that the striped catfish larvae could be reared in salinity up to 5 to 10 psu with a higher survival and tolerance to thermal stress when compared to fish maintained in freshwater.


Subject(s)
Catfishes , Salinity , Animals , Catfishes/growth & development , Catfishes/immunology , Digestion , Immunity , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...